The reverse greedy algorithm for the metric k-median problem
نویسندگان
چکیده
منابع مشابه
The Reverse Greedy Algorithm for the Metric K-Median Problem
The Reverse Greedy algorithm (RGREEDY) for the k-median problem works as follows. It starts by placing facilities on all nodes. At each step, it removes a facility to minimize the total distance to the remaining facilities. It stops when k facilities remain. We prove that, if the distance function is metric, then the approximation ratio of RGREEDY is between (logn/ log logn) and O(logn). 2005...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولMetric k-median Problem and Its Application in Reverse Greedy Random- ized Algorithm
The k-median problem has been widely applied in many research fields such as clustering, logistic center etc. Its approximated algorithm has been interested by many computer theory scientists. In 2006, a reverse greedy algorithm for the metric k-median problem has been proposed by Chrobak and the approximative ratio is proved between Ω(lg(n)/lg(lg(n))) and Ω(lg(n)). In this paper, we present an...
متن کاملA constant-factor approximation algorithm for the k-median problem
We present the first constant-factor approximation algorithm for the metric k-median problem. The k-median problem is one of the most well-studied clustering problems, i.e., those problems in which the aim is to partition a given set of points into clusters so that the points within a cluster are relatively close with respect to some measure. For the metric k-median problem, we are given n poin...
متن کاملEvaluating the Reverse Greedy Algorithm
This paper present two meta heuristics, reverse greedy and future aware greedy, which are variants of the greedy algorithm. Both are based on the observation that guessing the impact of future selections is useful for the current selection. While the greedy algorithm makes the best local selection given the past, future aware greedy makes the best local selection given the past and the estimate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information Processing Letters
سال: 2006
ISSN: 0020-0190
DOI: 10.1016/j.ipl.2005.09.009